Reconfigurable Nematic Liquid Crystal Drops
A study from MRSEC IRG-3, recently published in Nature, reports on reversible shape transitions of spherical drops containing liquid crystals into a rich variety of non-spherical drop morphologies with unique internal structure. The collaborative work was carried out by graduate students Wei-shao Wei and Sophie Ettinger and PhD alum Yu Xia, in the labs of Arjun Yodh and Shu Yang. The unexpected discovery provides new understanding about how molecular polydispersity—a condition where the lengths of liquid crystal molecules vary widely—can drive simple droplets to change into unusual shapes. Observations and modelling reveal that chain length polydispersity plays a crucial role in driving these morphogenic phenomena, via spatial segregation. This insight suggests new routes for encoding network structure and function in soft materials.
news release